Now Available!

IC PACKAGE PITCH, LEADFRAME PLATING, AND SUBSTRATE MARKETS

2013 EDITION

An Extension of the Most Comprehensive Report Available
On The Global IC Packaging Industry

Report Highlights

- Industry Overview
- The Economic State of the Industry
- Summary of Market Forecasts, 2012–2017
 - IC Package Pitch by Package Family and I/O Count
 - Leadframe Plating and Lead-free Issues
 - IC Packaging Substrates

New Venture Research Corp.
337 Clay St., Suite 101
Nevada City, CA 95959
www.newventureresearch.com

A Technology Market Research Company
info@newventureresearch.com
Tel: (530) 265-2004
Fax: (530) 265-1998
IC Package Pitch, Leadframe Plating, and Substrate Markets - 2013 Edition

Synopsis

Integrated circuits (ICs) are placed in a package, which gives the semiconductor die the mechanical and electrical interface to the printed circuit board (PCB). Once packaged, the IC transforms from a “die” into a “chip”.

This report, the IC Package Pitch, Leadframe Plating, And Substrate Markets, provides information which will help determine the size of a package, the test socket size, and the footprint of the device on a PCB, as well as provide information on material choices for leadframes, which affects the test companies, printed circuit board manufacturers, and others who delve into the interfaces with the package leadframe. The following paragraphs describe the topics of discussion within the report.

Package Pitch

One of the functions of an IC package is to provide the mechanical connection to the printed circuit board (PCB). Whether the connection is a lead, ball, land pad, or pin, each of these elements will be spaced at a certain distance to the next interconnection to the board. The distance between the center of one lead or ball to the next is referred to as the pitch.

Chapter 4 of this report covers the package pitch of all the IC package families available, including DIP, SOT, SO, TSOP, DFN, CC, QFP, QFN, PGA, BGA, FBGA, and WLP, by I/O count ranges of 3-18, 20-32, 34-100, 102-304, 308-999, and 1,000 and up.

Leadframe Plating Options

The leadframe is the skeleton of the IC package, providing the electrical and mechanical connection from the die to the PCB. Most leadframes are made out of copper, and it, and all materials used to create leadframes, do not solder to a PCB, so the leadframes must be plated with some type of solderable material to make the leadframe adhere to the PCB in a reflow oven. This material also protects the leadframe from oxidation, corrosion, and abrasion. Leadframes fall into either preplate or postplate options.

Preplate leadframes are plated well before die attach and assembly, by the leadframe manufacturer. Postplate leadframes are plated after die attach, interconnection, and overmolding, as part of the package assembly operations.

Chapter 5 covers the leadframe plating options, and issues associated with these choices.

IC Package Substrates

Packages such as PGAs, BGAs, LGAs, and FBGAs all attach to a substrate, also known as an interposer. The substrate replaces the leadframe as the interposer between the die and the PCB. The substrate can be made from a variety of materials, including BT (bismaleimide triazine) resin, FR-4, FR-5, ceramic, and polyimide flex tape. The substrate generally has balls or pins on the underside that attach it to the PCB. The package is considered an LGA, or land grid array, if the substrate is placed on the PCB directly, without balls or pins.

Chapter 6 contains forecasts of the various substrate options by Package Family, Substrate Units, Substrate Area, and Substrate Revenue, from 2012-2017.

IC Package Pitch, Leadframe Plating, and Substrate Markets - 2013 Edition continues NVR's leadership position in assessing the status and future of IC packaging. This analysis is an effective and economical tool for any company associated in the semiconductor industry to aid in assessing their own markets and potential areas of growth. The report sells for $995 and is delivered by email as a single-user PDF file. Extra single-user licenses sell for $250 each and a corporate license is $1000. With the purchase of the report, an Excel spreadsheet of all tables may be obtained for an additional $750 and a printed copy for $250.

About the Author

Sandra L Winkler has been an industry analyst starting in 1988, and from 1995 has been a staff member of Electronic Trend Publications, now New Venture Research Corporation. She has produced numerous off-the-shelf and custom reports throughout her career. She began her analyst career in the telecommunications industry, with Frost and Sullivan and since 1995 has focused on the semiconductor packaging industry, authoring more than 30 widely cited reports on the topic, most notably, The Worldwide IC Packaging Market, Advanced IC Packaging Markets and Trends, and IC Packaging Materials. She is a contributing editor and writer for Chip Scale Review magazine, Global SMT & Packaging News, and contributes to the IEEE/CPMT newsletter and other media. Ms. Winkler has earned an MBA from Santa Clara University and is on the executive planning committee of the IEEE/CPMT Santa Clara Valley chapter, serving as Luncheon Program Chair.
Chapter 1: Introduction
Chapter 2: Executive Summary
Chapter 3: State of the Industry
 Economic Overview
 Industry Overview

<table>
<thead>
<tr>
<th>Package Types</th>
<th>I/O Count</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP 004-018</td>
<td>≥1.27 mm</td>
<td></td>
</tr>
<tr>
<td>SOT 020-032</td>
<td>1.0 mm</td>
<td></td>
</tr>
<tr>
<td>SO 034-100</td>
<td>0.8 mm</td>
<td></td>
</tr>
<tr>
<td>TSOP 104-304</td>
<td>0.65 mm</td>
<td></td>
</tr>
<tr>
<td>DFN 308-999</td>
<td>0.5 mm</td>
<td></td>
</tr>
<tr>
<td>CC 1,000 +</td>
<td>0.45 mm</td>
<td></td>
</tr>
<tr>
<td>QFP</td>
<td>0.4 mm</td>
<td></td>
</tr>
<tr>
<td>QFN</td>
<td>0.3 mm</td>
<td></td>
</tr>
<tr>
<td>PGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5: IC Package Leadframe and Lead-free Issues
 Preplate
 Post plate
 Lead-free Issues: Tin Whiskers
 New Product Introductions
 - Lockheed Martin Space Systems Company

Forecasts of the various plating options including Matte Tin, Tin Silver, Tin Copper, Tin Bismuth, Nickel Palladium, and Nickel Palladium Gold.

Chapter 6: IC Package Substrates
 Ceramic
 Laminate
 HDIS
 Coreless
 Flex Tape
 Embedded
 Thermal Substrates
 Forecasts by Pitch, Units, Area, and Revenue
 New Product Introductions
 Fujitsu Components America, Inc.
 Intel Corporation
 Shinko Electric Industries Co., Ltd.
 Siliconware Precision Industries Co., Ltd.

Substrates are forecast by material type by package, and standardized for forecasting substrate area. The substrate revenue is also provided.

Appendix A: Web Address Guide
Appendix B: Glossary of Terms
List of Figures

Figure 4-1 DIP 003-018 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-2 DIP 020-032 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-3 DIP 034-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-4 Total DIP Pitch Forecast, 2012 vs. 2017
Figure 4-5 SOT Pitch Forecast, 2012 vs. 2017
Figure 4-6 SO 004-018 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-7 SO 020-032 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-8 SO 034-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-9 Total SO Pitch Forecast, 2012 vs. 2017
Figure 4-10 TSOP 004-018 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-11 TSOP 020-032 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-12 TSOP 034-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-13 Total TSOP Pitch Forecast, 2012 vs. 2017
Figure 4-14 DFN 004-018 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-15 DFN 020-032 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-16 Total DFN Pitch Forecast, 2012 vs. 2017
Figure 4-17 CC 020-032 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-18 CC 034-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-19 Total CC Pitch Forecast, 2012 vs. 2017
Figure 4-20 QFP 032-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-21 QFP 104-304 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-22 Total QFP Pitch Forecast, 2012 vs. 2017
Figure 4-23 QFN 004-018 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-24 QFN 020-032 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-25 QFN 034-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-26 QFN 104-304 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-27 Total QFN Pitch Forecast, 2012 vs. 2017
Figure 4-28 PGA 104-304 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-29 PGA 308-999 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-30 Total PGA Pitch Forecast, 2012 vs. 2017
Figure 4-31 BGA 034-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-32 BGA 104-304 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-33 BGA 308-999 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-34 BGA 1,000+ I/O Pitch Forecast, 2012 vs. 2017
Figure 4-35 Total BGA Pitch Forecast, 2012 vs. 2017
Figure 4-36 FBGA 004-018 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-37 FBGA 020-032 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-38 FBGA 034-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-39 FBGA 104-304 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-40 FBGA 308-999 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-41 FBGA 1,000+ I/O Pitch Forecast, 2012 vs. 2017
Figure 4-42 Total FBGA Pitch Forecast, 2012 vs. 2017
Figure 4-43 WLP 004-018 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-44 WLP 020-032 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-45 WLP 034-100 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-46 WLP 104-304 I/O Pitch Forecast, 2012 vs. 2017
Figure 4-47 Total WLP Pitch Forecast, 2012 vs. 2017
Figure 4-47 Total WLP Pitch Forecast, 2012 vs. 2017
Figure 4-48 Total IC Package Pitch Forecast, 2012 vs. 2017

List of Tables and Figures (continued)

Figure 5-1 Whisker Grain in Bright Tin on Copper
Figure 5-2 Schematic—Whisker Grain Morphology
Figure 5-3 Kirkendall Effect for Sn/Cu Couple
Figure 5-4 Kirkendall Stress Effect for Sn/Cu Couple
Figure 5-5 Compressive Stress Model
Figure 5-7 DIP Plating, 2012—2017
Figure 5-8 SOT Plating, 2012—2017
Figure 5-9 SO Plating, 2012—2017
Figure 5-10 TSOP Plating, 2012—2017
Figure 5-11 DFN Plating, 2012—2017
Figure 5-12 CC Plating, 2012—2017
Figure 5-13 QFP Plating, 2012—2017
Figure 5-14 QFN Plating, 2012—2017
Figure 5-15 Total IC Leadframe Plating, 2012—2017
Figure 6-1 Cored vs. Coreless Substrate
Figure 6-2 Pre-Molded Leadframe Process Flow
Figure 6-3 Wire bond type rLBGA Package Structure
Figure 6-4 Flip Chip type rLBGA Package Structure
Figure 6-5 Routable Lead-frame Top view
Figure 6-6 PGA Substrates, 2012 vs. 2017
Figure 6-7 BGA Substrates, 2012 vs. 2017
Figure 6-8 FBGA Substrates, 2012 vs. 2017
Figure 6-9 Substrate Unit Summary, 2012 vs. 2017
Figure 6-10 Substrate Area Summary, 2012 vs. 2017
Figure 6-11 Substrate Revenue Summary, 2012 vs. 2017

Subtotal

TOTAL